

Pergamon

Tetrahedron Letters, Vol. 35, No. 21, pp. 3545-3546, 1994 Elsovier Science Ltd Printed in Great Britain 0040-4039/94 \$7.00+0.00

0040-4039(94)E0581-H

Sodium Trimethylsilanethiolate in Novel Cyclizations for Synthesis of Aromatic Heterotricyclic Compounds

Long-Li Lai,^{*,†} Pen-Yuan Lin,[†] Wen-Hong Huang,[†] Min-Jen Shiao,^{†,‡} and Jih Ru Hwu^{*,†,§}

Institute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan 11529, Republic of China; and

Organosilicon and Synthesis Laboratory, Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China

Abstract: A new method was developed for synthesis of aromatic heterotricyclic compounds in 50– 64% yields from diaryls bearing a functionality including OMe, COOMe, and CN, and a leaving group (i.e., F and OMe) by use of MegSiSNa in 1,3-dimethyl-2-imidazolidinone at 120–150 °C.

Many aromatic heterotricyclic compounds possess important biological activities;¹ some of them function as DNA intercalators.² The key steps for synthesis of those compounds often involve formation of the central ring.³ Invention of new methods that can efficiently lead to aromatic heterotricyclic compounds would be beneficial to the development of biological chemistry.

Recently sodium trimethylsilanethiolate (Me₃SiSNa) has been utilized in demethylation of aromatic methyl ethers,⁴⁻⁶ conversion of nitriles to thioamides,^{5,7} and reduction of aromatic nitro compounds to amines.^{5,8} Herein we report a new cyclization process involving the use of Me₃SiSNa for synthesis of heterotricyclic compounds (Scheme).

Scheme

 $\begin{array}{c} \overbrace{X}^{L} \stackrel{E}{\longrightarrow} \stackrel{Y}{\longrightarrow} \\ \hline \begin{array}{c} Me_{3}SiSNa \\ \hline DMEU \\ 120-150 \ ^{\circ}C \end{array} \end{array} \xrightarrow[(50-64\%)]{Z} \stackrel{Y}{\longrightarrow} \\ \hline \begin{array}{c} E = OMe, COOMe, CN \\ X = none, O, C=O \\ \hline \begin{array}{c} Z = O, C(=O)O, C(=S)NH \end{array} \end{array} \xrightarrow[(50-64\%)]{Z} = O, C(=O)O, C(=S)NH \end{array}$

We first generated Me₃SiSNa (~1.1 equiv) from Me₃SiSSiMe₃ (2.0 equiv) and NaOMe (1.1 equiv) in anhydrous 1,3-dimethyl-2-imidazolidinone (DMEU) at room temperature. To this solution was added diaryl 1, 3, 5, or 7; the resultant solution was heated at 120–150 °C in a sealed tube. After normal workup and purification with silica gel chromatography, the desired heterotricycles 2, 4, 6, and 8 were obtained in 50–64% yields (see Table).

In the present conversion of 1 to 2 by use of Me₃SiSNa, O-demethylation followed by cyclization took place to form a five-membered ring. Use of the corresponding chlorine or bromine analog led to the desired product in <10% yields only. On the other hand, the success in the conversion of 3 to 4 demonstrates the feasibility of demethylation of a methyl ester with Me₃SiSNa and the efficiency of defluorinative cyclization to form a δ -lactone. Nucleophilic substitution on fluorobenzene also proceeded with a thioamide nucleophile, as indicated in the conversion of 5 to 6. We generated the thioamide nucleophile (-C(=S)NH⁻)

[‡]Deceased April 5, 1993.

by reacting Me₃SiS⁻ with the cyano group in $5.^{5,7}$ The nitrogen, instead of sulfur, center in this nucleophilic moiety reacted with the fluorobenzene moiety to give the seven-membered lactam product 6 in 54% yield.

The methoxy group can function not only as an electrophile for Me_3SiS^- during Odemethylation, but also as a leaving group in cyclization. We found that, upon treatment with Me_3SiSNa , demethylation and demethoxylation occurred sequentially in dimethoxy benzophenone 7 to give 8 in 50% yield.

starting material	product	temp (°C)	time (h)	yield (%)
	N 29	120	18	63
F COOMe		150	5	64
CLOF 5	CLOS 6	120	20	54
O T ¹¹	8 ¹²	150	24	50

Table.	Cyclizations	of Di	aryls	by	Use	of	1.1	equiv	of	Me	SiSNa	in	DMEU.
--------	--------------	-------	-------	----	-----	----	-----	-------	----	----	-------	----	-------

Spectroscopic data and elemental analysis results of all products were consistent with published data for 2, 4, and 8, or with the proposed structure 6 (mp 124–126 °C). Established methods were used for the preparation of starting materials 1^{10} (30%, mp 77–78 °C) and 5^{13} (52%, mp 44–46 °C).

Acknowledgments. For financial support, we thank the National Science Council of Republic of China (Grants NSC 82-0208-M001-33 and NSC 83-0208-M007-101) and National Research Institute of Chinese Medicine.

References and Note

- For recent examples, see (a) Krapcho, P.; Petry, M. E.; Hacker, M. P. J. Med. Chem. 1990, 33, 2651. (b) Eberlein, W. G.; Trummlitz, G.; Engel, W. W.; Schmidt, G.; Pelzer, H.; Mayer, N. J. Med. Chem. 1987, 30, 1378.
- Wakelin, L. P. G.; Waring, M. J. In Comprehensive Medicinal Chemistry; Sammes, P. G., Ed.; Pergamon: Oxford, 1990; pp 703-724.
- Ellis, G. P. Synthesis of Fused Heterocycles; John Wiley: New York, 1992; Vol. 47, pp 674, 699, 731, 993, 1060, 1061.
- 4. Hwu, J. R.; Tsay, S.-C. J. Org. Chem. 1990, 55, 5987.
- 5. Shiao, M.-J.; Lai, L.-L.; Ku, W.-S.; Lin, P.-Y.; Hwu, J. R. J. Org. Chem. 1993, 58, 4742.
- 6. Shiao, M.-J.; Ku, W.-S.; Hwu, J. R. Heterocycles 1993, 36, 323.
- 7. Lin, P.-Y.; Ku, W.-S.; Shiao, M.-J. Synthesis 1992, 1219.
- 8. Hwu, J. R.; Wong, F. F.; Shiao, M.-J. J. Org. Chem. 1992, 57, 5254.
- 9. Abramovitch, R. A.; Inbasekaran, M. N.; Kato, S.; Radzikowska, T. A.; Tomasik, P. J. Org. Chem. 1983, 48, 690.
- 10. Shiao, M.-J.; Liu, K.-H.; Lin, P.-Y. Heterocycles 1993, 36, 507.
- 11. Goto, T.; Onaka, M.; Mukaiyama, T. Chem. Lett. 1980, 51.
- 12. Commercially available from Aldrich Chemical Co., Milwaukee, W. I. U.S.A.
- 13. Atwell, G. J.; Rewcastle, G. W.; Baguley, B. C.; Denny, W. A. J. Med. Chem. 1990, 33, 1375.

(Received in Japan 10 August 1993; accepted 24 January 1994)